
Introduction to Machine Learning Fall Semester, 2014/5

Lecture 11: January 11
Lecturer: Lior Wolf Scribe: Yishay Mansour

11.1 Decision Tree Learning Algorithms

11.1.1 What is a decision tree?

A decision tree is a tree whose nodes are labeled with predicates and whose leaves are labeled
with the function values. In Figure 11.1 we have Boolean attributes. In this case we can
have each predicate to be simply a single attribute. The leaves are labeled with +1 and −1.
The edges are labeled with the values of the attributes that will generate that transition.

Given an input x, we first evaluate the root of the tree. Given the value of the predicate
in the root, x1, we continue either to the left sub-tree (if x1 = 0) or the right sub-tree (if
x1 = 1). The output of the tree is the value of the leaf we reach in the computation. Any
computation defines a path from the root to a leaf.

Figure 11.1: Boolean attributes decision tree

When we have continuous value attributes, we need to define some predicate class that
will induce binary splits. A common class is decision stumps which compare a single attribute

1



2 Lecture 11: January 11

to a fixed value, e.g., x1 > 5. The evaluation, again, starts by evaluating the root, and follows
a path until we reach a leaf. (See Figure 11.2)

Figure 11.2: A decision tree with decision stumps

When we consider decision stumps, the boundary for decisions are axis parallel, as shown
in Figure 11.3.

Figure 11.3: Decision boundary for decision stumps.

11.1.2 Decision Trees - Basic setup

The decision tree would have a class of predicates H. This class of predicates can be decision
stumps, single attributes (in case of Boolean attributes) or any other predicate class. The



11.1. DECISION TREE LEARNING ALGORITHMS 3

predicate class H can be highly complicated (e.g., hyperplanes) but in most algorithms simple
classes are used, since we like to build the decision trees from simple classifiers. Technically,
we can have in each node even a large decision tree.

The input to the decision tree algorithm is the sample S = {(x, b)}, which as always
includes examples of an input and its classification.

The output of the decision tree algorithm is a decision tree where each internal node has
a predicate from H and each leaf node has a classification value.

The goal is to output a small decision tree which classifies all (or most) of the examples
correctly. This is inline with Occam’s Razor, which states that low complexity hypotheses
have a better generalization guarantee.

11.1.3 Decision Trees - Why?

One of the main reasons for using decision trees is human interpretability. Humans find it
much easier to understand (small) decision trees. The evaluation process is very simple and
one can understand fairly simply what the decision tree will predict.

There is a variety of efficient decision tree algorithms, and there are many commercial
software packages that learn decision trees, such as C4.5 or CART. Even MATLAB has a
standard implementation of a decision tree algorithm.

The performance of decision trees is reasonable, probably slightly weaker than SVM and
AdaBoost, but comparable on many data sets. Decision forests, which use many small
decision trees have a general performance comparable to the best classification algorithms
(including SVM and AdaBoost).

11.1.4 Decision trees - Construction

There is a very natural greedy algorithm for constructing a decision tree given a sample. We
first decide on a predicate hr ∈ H to assign to the root. Once we selected hr, we split the
sample S to two parts. In S0 (S1) we have all the examples where hr(x) = 0 (hr(x) = 1).
Given S0 and S1 we can continue recursively to build a subtree for S0 and a subtree for S1.

The time complexity for such a procedure would be

Time(m) = O(|H|m) + Time(m0) + Time(m1) = O(m2)

where m = |S|, m0 = |S0| and m1 = |S1|. In most cases the running time is O(m logm)
since most of the splits will be approximately balanced.

The main issue that we need to resolve is how to select the predicate hr given a sample
S. Clearly, if all the samples have the same label we can select a leaf and mark it with that
label. Note that we are building a decision tree that would classify all the samples correctly.



4 Lecture 11: January 11

Figure 11.4: An example of a split for the potential equal to the observed error

11.1.5 Selecting predicates - splitting criteria

Given the outline of the greedy algorithm, the main remaining task is to select a predicate,
assuming that not all the examples have the same label. We would like a simple local criteria
that would be based only on the parameters observed at the node.

We would like to use a potential function val(·) to guide our selection. First let us define
val for a leaf v with a fraction of 1 equal to qv as val(qv). Next for an inner node v which
has two leaf sons, we define val(v) = u · val(p) + (1− u)val(r), where u, p and r are defined
as follows. Let u be the fraction of examples such that h(x) = 1, let p be the fraction of
examples for which b = 1 (the target function is labeled 1) out of the examples with h(x) = 1,
and let r be the fraction of examples for which b = 1 out of the examples with h(x) = 0.
Finally, for a decision tree T we define val(T ) =

∑
v∈Leaves pvval(qv), where pv is the fraction

of samples that reach v.

Given the function val we need to define how we select the predicate h ∈ H to assign
to node v. The idea is to consider the split induced by h, and to compute the value of
the potential val if we stop immediately after that split. Namely, we have val(v, h) =
u · val(p) + (1− u)val(r), where u, p, and r are defined as above. We select the predicate h
that minimizes val(v, h). (Note that the potential will never increase, since we can simply
select not to split.)

What remains now is to define val(q). Since we would like to minimize the overall error,
it seems reasonable to select val(q) = min(q, 1 − q). The reasoning is the following. When
we fix v to be a leaf, then the label that would minimize the fraction of error at v is the
one that is more likely, and the fraction of errors would be min(q, 1− q). It is important to
understand why this choice is problematic.

Consider the example in Figure 11.4. In this example we have that before the split we
have 0.20 fraction of errors and after the split we have 0.5 ∗ 0.4 + 0.5 ∗ 0 = 0.20 fraction



11.1. DECISION TREE LEARNING ALGORITHMS 5

of errors, so the potential did not decrease. This implies that the potential of the observed
error would prefer any other predicate over this split. On the other hand, if we look closely
at the split, it looks like an excellent split. We have half of the examples perfectly labeled,
and we are left with building a decision tree for only half of the sample.

The reason why the observed error potential failed is that it was not able to quantify
the progress we make when the observed error does not decrease. In order to overcome this
difficulty we would like the following to hold:

1. Every change in an improvement. We will be able to achieve this by using a strictly
concave function.

2. The potential is symmetric around 0.5, namely, val(q) = val(1− q).

3. When zero perfect classification. This implies that val(0) = val(1) = 0.

4. We have val(0.5) = 0.5.

The important an interesting part is the concavity. The concavity will guarantee us that
any split will have a decrease in the potential. The reason is that

val(q) > u · val(p) + (1− u)val(r)

when q = up+ (1− u)r, due to the strict concavity.
The other conditions are mainly to maintain normalization. Using them we can ensure

that val(T ) ≥ error(T ), since at any leaf v we will have val(v) > error(v).

11.1.6 Splitting criteria

We have reduced the discussion to selecting a splitting criteria which is a strictly concave
function. Several potential functions are suggested in the literature (see Figure 11.5) :

1. Gini Index used in CART:

G(q) = 2q(1− q)

2. Entropy used in C4.5

G(q) =
1

2

[
q · log2

1

q
+ (1− q) · log2

1

1− q

]

3. Variance function

G(q) =
√
q(1− q)



6 Lecture 11: January 11

Figure 11.5: Relationships between different splitting criteria. The criteria, from inner to
outer are observed error, Gini index, Entropy and Variance

We can now go back to the example of Figure 11.4, and consider the Gini index, i.e.,
G = 2q(1− q). Before the split we have

G(0.8) = 2 · 0.8 · 0.2 = 0.32

and after the split we have

0.5G(0.6) + 0.5G(1) = 0.5 · 2 · 0.4 · 0.6 = 0.24.

In this case, there is a drop in the potential, which is even significant. The drop is due to
the fact that G(·) is strictly concave and not linear. Similar drops would be observed for the
other two optional cost functions (see figure 11.5).

11.1.7 Decision tree construction - putting it all together

We define a procedure DT (S), where S is the sample. The procedure return a tree that
classifies S correctly.

Procedure DT(S) return a DT T
If ∀(x, b) ∈ S we have b = 1 Then

Create a Leaf with label 1 and Return.



11.1. DECISION TREE LEARNING ALGORITHMS 7

If ∀(x, b) ∈ S we have b = 0 Then
Create a Leaf with label 0 and Return.

For each h ∈ H compute
Sh = {(x, b) ∈ S|h(x) = 1}.
uh = |Sh|/|S|
Sh,1 = {(x, b) ∈ Sh|b = 1}
ph = |Sh,1|/|Sh|.
Sh,0 = {(x, b) ∈ S − Sh|b = 1}
rh = |Sh,0|/|S − Sh|.
val(h) = uhval(ph) + (1− uh)val(rh),

Let h′ = arg minh val(h)
Call DT (Sh′) and receive T1.
Call DT (S − Sh′) and receive T0.
Return a decision tree with root labeled by h′, right subtree T1 and left subtree T0.

In class, in the slides we have an example of running the algorithm with the Gini index.

11.1.8 Decision tree algorithms - Guaranteed performance

We do not have any guarantee about the decision tree size produced by the greedy algorithm.
In fact, if we consider the target function x1 ⊕ x2 and a uniform distribution over d binary
attributes then the greedy algorithm would create a very large decision tree. The reason
is that when it considers any single attribute, the probability that the target is 1 or 0 is
identical (until we select either x1 or x2). This implies that the decision tree will select
attributes randomly, until we select either x1 or x2.

In fact, we can show that finding the smallest decision tree is NP-hard, which means that
it is unlikely we will have a computationally efficient algorithm for computing the smallest
decision tree given a sample.

We can perform an analysis that is based on the weak learner hypothesis. If we assume
that for any distribution there is a predicate h ∈ H which is a weak learner, i.e., has error
at most 1/2− γ, then we can bound the decision tree size as a function of the parameter γ.
Specifically,

1. For the Gini index,we have that the decision tree size is at most eO(1/γ21/ε2log21/ε).

2. For the Entropy index,we have that the decision tree size is at most eO(1/γ2log21/ε).

3. For the Variance index,we have that the decision tree size is at most eO(1/γ2log1/ε).


