
Introduction to Machine Learning Fall Semester, 2014/5

Recitation 9: December 28
Lecturer: Regev Schweiger Scribe: Yishay Mansour

9.1 AdaBoost

9.1.1 Review

Reminder: Algorithm A learns Weak-PAC a concept class C with H if:
∃γ > 0,
∀c∗ ∈ C, (target function)
∀D, (distribution)
∀δ > 1

2
,

With probability 1−δ, algorithm A outputs an hypothesis h ∈ H such that error(h) ≤ 1
2
−γ.

Input: A set of m classified examples: S = {〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xm, ym〉} where
xi ∈ Rd, yi ∈ {−1, 1} and a class of weak learners H.
Definitions: Let Dt denote the distribution (weights) of the examples at iteration t: Dt(xi)
is the weight of example 〈xi, yi〉 at iteration t.
Initialization:

D1(xi) =
1

m
∀i ∈ {1, · · · ,m}

Iterate: t = 1, 2, . . . , T

ht = arg min
h∈H

Pr
x∼Dt

[h(x) 6= y]

εt = Pr
x∼Dt

[ht(x) 6= y]

αt =
1

2
ln

1− εt
εt

Dt+1(xi) =
Dt(xi)e

−αtyiht(xi)

Zt

Finally:

H(x) = sign

(
T∑
t=1

αtht(x)

)

1



2 Lecture 9: December 28

Figure 9.1: Example of AdaBoost with axis-aligned hyperplanes as base learners. (a) The
top row shows decision boundaries at each boosting round. The bottom row shows how
weights are updated at each round, with incorrectly (resp., correctly) points given increased
(resp., decreased) weights. The size of the points represents the distribution weight assigned
to them at each boosting round. (b) Visualization of final classifier, constructed as a linear
combination of base learners.1

Figure 9.1 illustrates the AdaBoost algorithm.

9.1.2 Feature decision stumps as weak learners

We show how to efficiently compute the optimal weak learner in the first step of each Ad-
aBoost iteration for a class H of feature decision stumps, given the distribution/weights
D(xi) over the sample set:

Assume each example x has a set of features f1(x), . . . , fk(x), . . .. Such features can be
one of a few types:

1. Binary features: fk(x) ∈ {0, 1}.

2. Discrete features: for example fk(x) ∈ {a, b, c}.

3. Continuous features: fk(x) ∈ R.

1Adapted from Foundations of Machine Learning



9.1. ADABOOST 3

Binary Features

We have decision stumps which have two parameters c0, c1 ∈ {+1,−1}. Let us fix a binary
feature fk(x) 2. Then a stump has the form

hkc0,c1(x) =

{
c0 fk(x) = 0
c1 fk(x) = 1

Given a distribution D(xi) we select the optimal c0 and c1 for hk (which is based on
feature fk) as follows. For j ∈ {0, 1} and b ∈ {+1,−1} we compute

wjb =
∑

{i|fk(xi)=j,yi=b}

D(xi)

Note that those values may be computed during a single pass over the m samples. We
have that the error of hkc0,c1 is

error(hkc0,c1) = w0
−c0 + w1

−c1

This is because hkc0,c1 errs on samples 〈xi,−c0〉 with fk(xi) = 0 or samples 〈xi,−c1〉 with
fk(xi) = 1. Therefore the optimal stump hkc0,c1 has

cj =

{
+1 wj−1 ≤ wj+1

−1 wj−1 > wj+1

Discrete Features

The feature fk(x) has ` different values, i.e., fk(x) ∈ {v1, , . . . , v`}. Similarly, we can set the
weak learner to be

hkc1,...,c`(x) =


c1 fk(x) = v1
...

...
c` fk(x) = v`

Again, the parameters cj ∈ {+1,−1}. As before we can set (during a single pass over the
sample set), for j ∈ [1, `] and b ∈ {+1,−1} we compute

wjb =
∑

{i:|fk(xi)=vj ,yi=b}

D(xi)

The error is

error(hkc1,...,c`) =
∑̀
j=1

wj−cj

and we select cj as before.

2Once we find the optimal stump for each k, an outer loop will choose the best across the possible values
of k. Therefore, in what follows we assume a fixed k.



4 Lecture 9: December 28

Continuous Features

We now have that fk(x) ∈ R. A possible form for a weak learner is

hkv(x) =

{
c0 fk(x) ≤ v
c1 fk(x) > v

Technically v can be of an infinite number of values. However, if we have a sample of size
m we can sort the values fk(x1) ≤ · · · ≤ fk(xm). Although there are an infinite number of
possible values for v, there are really only m+ 1 interesting ones. Namely, v0, . . . , vm, where
v0 ≤ fk(x1), vj ∈ (fk(xj), fk(xj+1] and vm > fk(xm) 3.

Now, for any choice of m + 1 such values for v we can apply the method used for the
case of binary features above (replacing the binary condition over values of b, fk(x) = 0,
fk(x) = 1 with the two options fk(x) ≤ v, fk(x) > v) to find the optimal c0, c1.

Observe, however, that while boosting stumps are widely used in combination with Ad-
aBoost and can perform well in practice, the algorithm that returns the stump with the
minimal empirical error is not a weak learner! Consider, for example, the simple XOR exam-
ple with four data points lying in R2, where points in the second and fourth quadrants are
labeled positively and those in the first and third quadrants negatively. Then, no decision
stump can achieve an accuracy better than 1/2.

9.1.3 Error of ht on Dt+1

We will show that the hypothesis ht has error 1/2 on Dt+1 and hence ht+1 6= ht (since by the
weak learning assumption, the weak learner has error bounded away from 1

2
).

Claim 9.1 Prxi∼Dt+1 [ht(xi) 6= yi] = 1
2

We first show a few quantities that we will use later.

eαt =

√
1− εt
εt

e−αt =

√
εt

1− εt

Therefore,

εte
αt =

√
εt(1− εt) = (1− εt)e−αt

Recall that, ∑
{i|yi 6=ht(xi)}

Dt(xi) = εt.

3For example, any two values v and u in the range [fk(xj), fk(xj+1] are equivalent in terms of the values
hv(·) and hu(·) over the m samples.



9.1. ADABOOST 5

Now the normalization is,

Zt =
m∑
i=1

Dt(xi)e
−αtyiht(xi)

=
∑

{i|yi=ht(xi)}

Dt(xi)e
−αt +

∑
{i|yi 6=ht(xi)}

Dt(xi)e
αt

= (1− εt)e−αt + εte
αt

= 2
√
εt(1− εt)

Now we can prove the claim.

Pr
x∼Dt+1

[ht(x) 6= y] =
∑

{i|yi 6=ht(xi)}

Dt+1(xi)

=
∑

{i|yi 6=ht(xi)}

Dt(xi)e
−αtyiht(xi)

Zt

=
∑

{i|yi 6=ht(xi)}

Dt(xi)
eαt

Zt

=
eαt

Zt
εt =

√
1−εt
εt
εt

2
√
εt(1− εt)

=
1

2

9.1.4 Coordinate Descent and AdaBoost

AdaBoost was designed to address a novel theoretical question, that of designing a strong
learning algorithm using a weak learning algorithm. We will show, however, that it coincides
in fact with a very simple and classical algorithm, which consists of applying a coordinate
descent technique to a convex and differentiable objective function. Coordinate descent is
just like gradient descent, except that you can’t move along the gradient, you have to choose
just one coordinate at a time to move along.

Suppose (for the sake of simplicity) that there is a finite number of weak classifiers, hj(x),
j = 1, . . . , n. We wish to find a linear combination with coefficients λj, that minimizes the
average exponential loss:

F (λ) = F (λ1, . . . , λn) =
1

m

m∑
i=1

e−yi
∑n

j=1 λjhj(xi)

The coordinate descent algorithm will first choose a coordinate k in which the slope is



6 Lecture 9: December 28

the steepest. This translates to calculating, for each k, the following:

∂

∂α
F (λ + α · ek) =

1

m

m∑
i=1

∂

∂α

(
e−yi

∑n
j=1 (λj+α·δj=k)hj(xi)

)
= − 1

m

m∑
i=1

yihk(xi)e
−yi

∑n
j=1 (λj+α·δj=k)hj(xi)

Substituting α = 0 and defining D(xi) = e−yi
∑n

j=1 λjhj(xi)/Z, with Z the relevant normal-
izing factor, gives:

= − 1

m

m∑
i=1

yihk(xi)e
−yi

∑n
j=1 λjhj(xi)

= − 1

m

m∑
i=1

yihk(xi)D(xi)Z

∝
m∑
i=1

yihk(xi)D(xi)

= (1− εk)− (εk) = 1− 2εk

So finding the direction k the maximizes the slope is equivalent to minimizing εk, which
is what AdaBoost does at each step!

The next stage in this coordinate descent variant is to analytically calculate the optimal
step α is direction k. It can be shown that this gives the same α in AdaBoost.


