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3.1 Maximum Likelihood

Consider a Poisson distribution. A Poisson distribution is defined by a parameter λ > 0 and
the probability is defined over the integers and denoted by Pois(λ). The motivation is that
it models an arrival rates of individuals with an average arrival rate of λ. The probability of
having k individual arrive when X ∼ Pois(λ) is,

Pr[X = k] =
e−λλk

k!
.

Assume we have a sample of n points S = {zi, . . . , zn} where each zi is drawn indepen-
dently from a distribution Pois(λ). The likelihood function would be,

LS(λ) = Pr[S|λ] =
n∏
i=1

Pr[zi|λ] =
n∏
i=1

e−λλzi
zi!

.

Many times, it is more convenient to work with the log-likelihood, simply taking the
logarithm of the likelihood, and the product becomes a sum. Note that maximizing the
likelihood is equivalent to maximizing the log-likelihood. In our case, the log-likelihood is:

`S(λ) = logLS(λ) =
n∑
i=1

(−λ+ zi log λ− log(zi!))

We would like to find the λ that maximizes the likelihood, denoted by λML. Since the terms
log(zi!) do not depend on λ we can ignore them in the maximization. We have,

λML = arg max
λ

(
−nλ+ (

n∑
i=1

zi) log λ

)

Taking the derivative and equating with zero we have,

0 = −n+

(
n∑
i=1

zi

)
1

λML
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and the solution is,

λML =

∑n
i=1 zi
n

.

We need to verify that this is indeed a maximum. The second derivative is

(
n∑
i=1

zi

)
−1

λ2
< 0

and therefore we found a maximum.

3.2 EM Example: Mixture of Gaussians

We assume a two stage process for generating each point x1, . . .xn. In this setting we have
a distribution p = (p1, . . . , pk) over k multivariate Gaussians of d dimensions. Let Zi be the
index of the Gaussian from which the i-th point is sampled. Namely, the probability of a
sample to originate from the jth Gaussian is Pr[Zi = j] = pj.

We limit ourselves in this discussion to Gaussians with covariance matrix of the form εI.
The points in the jth MVN are generated using MVN(µj, εI), where µj ∈ Rd and I is the
identity d × d matrix. Therefore, the density function of the observation xi given that it
originates from the jth Gaussian is:

fj(xi) =
1

(
√

2πε)d
e−

1
2ε
‖xi−µj‖2

Therefore, the parameters of our model are θ = (p1, . . . , pk,µ1, . . . ,µk).

Define ati,j as the posterior distribution of Zi, under the parameters θt:

ati,j = Pr
θt

[Zi = j|Xi = xi] =
ptjf

t
j (xi)∑k

r=1 p
t
rf

t
r(xi)

Note that the values of the parameters {µt
j} (which are given at the E-Step, as computed

by the M -Step of the preceding iteration) appear in f tj (xi) - this is actually the meaning of
the notation t in f tj (xi).
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In the E-step we therefore have, with Z distributed according to the posterior distribution:

Q(θ|θt) = EZ|X,θt
[
log Pr

θ
[X = x,Z]

]
= EZ|X,θt

[
n∑
i=1

log Pr
θ

[Xi = xi, Zi]

]

= EZ|X,θt

[
n∑
i=1

log Pr
θ

[Zi] + log Pr
θ

[xi|Zi]

]

= EZ|X,θt

[
n∑
i=1

log pZi +

(
const− 1

2ε
‖xi − µZi

‖2
)]

=
n∑
i=1

EZ|X,θt [log pZi ] + const− 1

2ε
EZ|X,θt

[
‖xi − µZi

‖2
]

In the M -step we can separately maximize {pt+1
j } and {µt+1

j }. Beginning with {pt+1
j },

we recall that this is a constrained optimization problem. Also, Q decomposes nicely, so we
need only solve:

pt+1 = arg max
p

n∑
i=1

EZ|X,θt [log pZi ]

= arg max
p

n∑
i=1

k∑
j=1

ati,j log pj

subject to the optimization
∑k

j=1 pj = 1. This can be solved with Lagrange multipliers, with
the Lagrangian function

L(p1, . . . , pk) =
n∑
i=1

k∑
j=1

ati,j log pj − λ

(
k∑
j=1

pj − 1

)

Solving this gives the solution:

pt+1
j =

∑n
i=1 a

t
i,j∑k

j=1

∑n
i=1 a

t
i,j

=

∑n
i=1 a

t
i,j

n
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For the values of µt+1 we have

µt+1 = arg max
µ

n∑
i=1

(
− 1

2ε
EZ|X,θt

[
‖xi − µZi

‖2
])

= arg max
µ

n∑
i=1

(
− 1

2ε

k∑
j=1

ati,j‖xi − µj‖2
)

= arg min
µ

n∑
i=1

k∑
j=1

ati,j‖xi − µj‖2

= arg min
µ
F (µ1, . . . ,µk)

We need to optimize this for each coordinate of each µj. However, using matrix calculus
we can write this more simply as a derivative according to a vector:

∂F

∂µj

=
∂

∂µj

(
n∑
i=1

k∑
j=1

ati,j‖xi − µj‖2
)

= 2
n∑
i=1

ati,j
(
xi − µj

)
= 0⇒

µt+1
j =

∑n
i=1 a

t
i,jxi∑n

i=1 a
t
i,j

3.3 Back to k-means

(The following is non-mandatory.) Recall the iterative update rules of k-means:

Assign: Set each point to its closest center:

Ct+1
i = arg min

j
‖xi − µt

j‖2, St+1
j = {i|Ct+1

i = j}

Update: Minimize sum of distances by re-computing the centers:

µt+1
j =

∑
i∈St+1

j
xi

|St+1
j |

Compare this to the iterative update rules of EM in the case of GMM:
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E-Step:

ati,j =
ptjf

t
j (xi)∑k

r=1 p
t
rf

t
r(xi)

M-Step:

pt+1
j =

∑n
i=1 a

t
i,j

n

µt+1
j =

∑n
i=1 a

t
i,jxi∑n

i=1 a
t
i,j

We can see that k-means in this case is a limiting case of EM, where the posterior
probabilities ati,j are either 0 or 1.

Let us see this more formally. At a given iteration t, fix an xi and µt
j, and examine ati,j.

Suppose that, w.l.o.g., xi is closer to the first cluster’s centre:

‖xi − µt
1‖2 < ‖xi − µt

2‖2, . . . , ‖xi − µt
k‖2

Compare ati,1 and the other ati,j (j > 1), as a function of ε., e.g.:

ati,2
ati,1

=
pt2 · f2(x)

pt1 · f1(x)

=
pt2
pt1
·

(
√

2πε)−d exp
(
− 1

2ε
‖x− µt

2‖2
)

(
√

2πε)−d exp
(
− 1

2ε
‖x− µt

1‖2
)

=
pt2
pt1
· exp

(
− 1

2ε

(
‖x− µt

2‖2 − ‖x− µt
1‖2
))

When ε→ 0, the ratio quickly converges to 0, while their sum is bounded. Therefore, we
will get at1 → 1 and atj → 0 for j > 1.


