Recitation 3

Lecturer: Regev Schweiger

Scribe: Regev Schweiger

3.1 Maximum Likelihood

Consider a Poisson distribution. A Poisson distribution is defined by a parameter $\lambda > 0$ and the probability is defined over the integers and denoted by $Pois(\lambda)$. The motivation is that it models an arrival rates of individuals with an average arrival rate of λ . The probability of having k individual arrive when $X \sim Pois(\lambda)$ is,

$$\Pr[X=k] = \frac{e^{-\lambda}\lambda^k}{k!}.$$

Assume we have a sample of n points $S = \{z_i, \ldots, z_n\}$ where each z_i is drawn independently from a distribution $Pois(\lambda)$. The likelihood function would be,

$$L_S(\lambda) = \Pr[S|\lambda] = \prod_{i=1}^n \Pr[z_i|\lambda] = \prod_{i=1}^n \frac{e^{-\lambda}\lambda_i^z}{z_i!}.$$

Many times, it is more convenient to work with the *log-likelihood*, simply taking the logarithm of the likelihood, and the product becomes a sum. Note that maximizing the likelihood is equivalent to maximizing the log-likelihood. In our case, the log-likelihood is:

$$\ell_S(\lambda) = \log L_S(\lambda) = \sum_{i=1}^n (-\lambda + z_i \log \lambda - \log(z_i!))$$

We would like to find the λ that maximizes the likelihood, denoted by λ_{ML} . Since the terms $\log(z_i!)$ do not depend on λ we can ignore them in the maximization. We have,

$$\lambda_{ML} = \arg \max_{\lambda} \left(-n\lambda + (\sum_{i=1}^{n} z_i) \log \lambda \right)$$

Taking the derivative and equating with zero we have,

$$0 = -n + \left(\sum_{i=1}^{n} z_i\right) \frac{1}{\lambda_{ML}}$$

and the solution is,

$$\lambda_{ML} = \frac{\sum_{i=1}^{n} z_i}{n}.$$

We need to verify that this is indeed a maximum. The second derivative is

$$\left(\sum_{i=1}^n z_i\right) \frac{-1}{\lambda^2} < 0$$

and therefore we found a maximum.

3.2 EM Example: Mixture of Gaussians

We assume a two stage process for generating each point $\mathbf{x}_1, \ldots, \mathbf{x}_n$. In this setting we have a distribution $\mathbf{p} = (p_1, \ldots, p_k)$ over k multivariate Gaussians of d dimensions. Let Z_i be the index of the Gaussian from which the *i*-th point is sampled. Namely, the probability of a sample to originate from the j^{th} Gaussian is $\Pr[Z_i = j] = p_j$.

We limit ourselves in this discussion to Gaussians with covariance matrix of the form ϵI . The points in the j^{th} MVN are generated using $MVN(\boldsymbol{\mu}_j, \epsilon I)$, where $\boldsymbol{\mu}_j \in \mathbb{R}^d$ and I is the identity $d \times d$ matrix. Therefore, the density function of the observation \mathbf{x}_i given that it originates from the j^{th} Gaussian is:

$$f_j(\mathbf{x}_i) = \frac{1}{(\sqrt{2\pi\epsilon})^d} e^{-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2}$$

Therefore, the parameters of our model are $\boldsymbol{\theta} = (p_1, \ldots, p_k, \boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k).$

Define $a_{i,j}^t$ as the posterior distribution of Z_i , under the parameters $\boldsymbol{\theta}^t$:

$$a_{i,j}^{t} = \Pr_{\boldsymbol{\theta}^{t}} \left[Z_{i} = j | \mathbf{X}_{i} = \mathbf{x}_{i} \right] = \frac{p_{j}^{t} f_{j}^{t}(\mathbf{x}_{i})}{\sum_{r=1}^{k} p_{r}^{t} f_{r}^{t}(\mathbf{x}_{i})}$$

Note that the values of the parameters $\{\boldsymbol{\mu}_{j}^{t}\}$ (which are given at the *E*-Step, as computed by the *M*-Step of the preceding iteration) appear in $f_{j}^{t}(\mathbf{x}_{i})$ - this is actually the meaning of the notation *t* in $f_{j}^{t}(\mathbf{x}_{i})$. In the E-step we therefore have, with \mathbf{Z} distributed according to the posterior distribution:

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{t}) = E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\log \Pr_{\boldsymbol{\theta}} \left[\mathbf{X} = \mathbf{x}, \mathbf{Z} \right] \right]$$

$$= E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\sum_{i=1}^{n} \log \Pr_{\boldsymbol{\theta}} \left[\mathbf{X}_{i} = \mathbf{x}_{i}, Z_{i} \right] \right]$$

$$= E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\sum_{i=1}^{n} \log \Pr_{\boldsymbol{\theta}} \left[Z_{i} \right] + \log \Pr_{\boldsymbol{\theta}} \left[\mathbf{x}_{i} | Z_{i} \right] \right]$$

$$= E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\sum_{i=1}^{n} \log p_{Z_{i}} + \left(\operatorname{const} - \frac{1}{2\epsilon} \| \mathbf{x}_{i} - \boldsymbol{\mu}_{Z_{i}} \|^{2} \right) \right]$$

$$= \sum_{i=1}^{n} E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\log p_{Z_{i}} \right] + \operatorname{const} - \frac{1}{2\epsilon} E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\| \mathbf{x}_{i} - \boldsymbol{\mu}_{Z_{i}} \|^{2} \right]$$

In the *M*-step we can separately maximize $\{p_j^{t+1}\}$ and $\{\mu_j^{t+1}\}$. Beginning with $\{p_j^{t+1}\}$, we recall that this is a constrained optimization problem. Also, *Q* decomposes nicely, so we need only solve:

$$\mathbf{p}^{t+1} = \arg \max_{\mathbf{p}} \sum_{i=1}^{n} E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\log p_{Z_{i}}\right]$$
$$= \arg \max_{p} \sum_{i=1}^{n} \sum_{j=1}^{k} a_{i,j}^{t} \log p_{j}$$

subject to the optimization $\sum_{j=1}^{k} p_j = 1$. This can be solved with Lagrange multipliers, with the Lagrangian function

$$\mathcal{L}(p_1,\ldots,p_k) = \sum_{i=1}^n \sum_{j=1}^k a_{i,j}^t \log p_j - \lambda \left(\sum_{j=1}^k p_j - 1\right)$$

Solving this gives the solution:

$$p_j^{t+1} = \frac{\sum_{i=1}^n a_{i,j}^t}{\sum_{j=1}^k \sum_{i=1}^n a_{i,j}^t} = \frac{\sum_{i=1}^n a_{i,j}^t}{n}$$

For the values of μ^{t+1} we have

$$\boldsymbol{\mu}^{t+1} = \arg \max_{\boldsymbol{\mu}} \sum_{i=1}^{n} \left(-\frac{1}{2\epsilon} E_{\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{t}} \left[\|\mathbf{x}_{i} - \boldsymbol{\mu}_{Z_{i}}\|^{2} \right] \right)$$
$$= \arg \max_{\boldsymbol{\mu}} \sum_{i=1}^{n} \left(-\frac{1}{2\epsilon} \sum_{j=1}^{k} a_{i,j}^{t} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2} \right)$$
$$= \arg \min_{\boldsymbol{\mu}} \sum_{i=1}^{n} \sum_{j=1}^{k} a_{i,j}^{t} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$
$$= \arg \min_{\boldsymbol{\mu}} F(\boldsymbol{\mu}_{1}, \dots, \boldsymbol{\mu}_{k})$$

We need to optimize this for each coordinate of each μ_j . However, using matrix calculus we can write this more simply as a derivative according to a vector:

$$\frac{\partial F}{\partial \boldsymbol{\mu}_{j}} = \frac{\partial}{\partial \boldsymbol{\mu}_{j}} \left(\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i,j}^{t} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2} \right)$$
$$= 2 \sum_{i=1}^{n} a_{i,j}^{t} \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\right) = 0 \Rightarrow$$
$$\boldsymbol{\mu}_{j}^{t+1} = \frac{\sum_{i=1}^{n} a_{i,j}^{t} \mathbf{x}_{i}}{\sum_{i=1}^{n} a_{i,j}^{t}}$$

3.3 Back to *k*-means

(The following is non-mandatory.) Recall the iterative update rules of k-means:

Assign: Set each point to its closest center:

$$C_i^{t+1} = \arg\min_j \|\mathbf{x}_i - \boldsymbol{\mu}_j^t\|^2, S_j^{t+1} = \{i | C_i^{t+1} = j\}$$

Update: Minimize sum of distances by re-computing the centers:

$$\boldsymbol{\mu}_j^{t+1} = \frac{\sum_{i \in S_j^{t+1}} \mathbf{x}_i}{|S_j^{t+1}|}$$

Compare this to the iterative update rules of EM in the case of GMM:

E-Step:

$$a_{i,j}^t = \frac{p_j^t f_j^t(\mathbf{x}_i)}{\sum_{r=1}^k p_r^t f_r^t(\mathbf{x}_i)}$$

M-Step:

$$p_{j}^{t+1} = \frac{\sum_{i=1}^{n} a_{i,j}^{t}}{n}$$
$$\mu_{j}^{t+1} = \frac{\sum_{i=1}^{n} a_{i,j}^{t} \mathbf{x}_{i}}{\sum_{i=1}^{n} a_{i,j}^{t}}$$

We can see that k-means in this case is a limiting case of EM, where the posterior probabilities $a_{i,j}^t$ are either 0 or 1.

Let us see this more formally. At a given iteration t, fix an \mathbf{x}_i and $\boldsymbol{\mu}_j^t$, and examine $a_{i,j}^t$. Suppose that, w.l.o.g., \mathbf{x}_i is closer to the first cluster's centre:

$$\|\mathbf{x}_{i} - \boldsymbol{\mu}_{1}^{t}\|^{2} < \|\mathbf{x}_{i} - \boldsymbol{\mu}_{2}^{t}\|^{2}, \dots, \|\mathbf{x}_{i} - \boldsymbol{\mu}_{k}^{t}\|^{2}$$

Compare $a_{i,1}^t$ and the other $a_{i,j}^t$ (j > 1), as a function of ϵ ., e.g.:

$$\frac{a_{i,2}^{t}}{a_{i,1}^{t}} = \frac{p_{2}^{t} \cdot f_{2}(\mathbf{x})}{p_{1}^{t} \cdot f_{1}(\mathbf{x})} \\
= \frac{p_{2}^{t}}{p_{1}^{t}} \cdot \frac{(\sqrt{2\pi\epsilon})^{-d} \exp\left(-\frac{1}{2\epsilon} \|\mathbf{x} - \boldsymbol{\mu}_{2}^{t}\|^{2}\right)}{(\sqrt{2\pi\epsilon})^{-d} \exp\left(-\frac{1}{2\epsilon} \|\mathbf{x} - \boldsymbol{\mu}_{1}^{t}\|^{2}\right)} \\
= \frac{p_{2}^{t}}{p_{1}^{t}} \cdot \exp\left(-\frac{1}{2\epsilon} \left(\|\mathbf{x} - \boldsymbol{\mu}_{2}^{t}\|^{2} - \|\mathbf{x} - \boldsymbol{\mu}_{1}^{t}\|^{2}\right)\right)$$

When $\epsilon \to 0$, the ratio quickly converges to 0, while their sum is bounded. Therefore, we will get $a_1^t \to 1$ and $a_j^t \to 0$ for j > 1.