Introduction to Machine Learning

Fall Semester

Recitation 13

Lecturer: Regev Schweiger Scribe: Regev Schweiger

13.1 Informal Course Overview

13.1.1 Unsupervised

Clustering

- K-Means
- Gaussian Mixture Model (GMM), learned with EM
- Spectral Clustering

Dimensionality Reduction

• PCA (and Probabilistic PCA)

13.1.2 Supervised

Binary Classification

- k-Nearest Neighbors, kernel k-NN
- Naïve Bayes
- Hyperplane Classifiers:
 - Perceptron (and Margin Perceptron)
 - Winnow
 - SVM:
 - * Hard Margin and Soft Margin SVM
 - * Kernel SVM: Polynomial and Gaussian Kernels, others
- Decision Tree (e.g. with Decision Stumps)
- Boosting:

2 Lecture 13

- AdaBoost (e.g. with Decision Stumps)
- Bagging, Stacking
- Random Forest

Multiclass Classification

- K-Nearest Neighbors
- Naïve Bayes
- Multiclass SVM: One vs. All, One vs. One

Regression

- K-Nearest Neighbors Regression
- Linear Regression
- Linear Regression with Regularization:
 - Ridge Regression
 - Lasso Regression
- Logistic Regression

13.1.3 Tools and Theory

Model Selection

- Train vs. Test, k-fold Cross Validation
- Penalty

Statistics

- Maximum Likelihood (ML) Estimators
- Maximum Aposteriori (MAP) Estimators

Optimization

- Gradient Descent (and Coordinate Gradient Descent)
- Linear Programming, Quadratic Programming
- Expectation-Maximization (EM)

Others

- PAC Framework
- Singular Value Decomposition (SVD)